Handout 2
Interval Trees

Construction and Verification of Software
FCT-NOVA
Bernardo Toninho

19 April, 2022

Contents
[I__Interval Trees| 2
2 Implementing Interval Trees| 6
2.1 BasicOperations| 7
2.1.1 Update|. 7
212 Ranged Query|. L 8
B Tasks| 8
BI _Taskdl.o 10
B2 Task2l. 10
B3 Task3l. 10
[4 Important Verification Hints| 11
13

This handout is due on Monday, May 9, at 23h59m. The exact details on how to turn in your
solution will be made available at a later date.

Read the explanation very carefully and don’t be scared about the page count. The first 6
pages are mostly pictures to help you understand how interval trees work. The next 2 pages
describe in extensive detail how the interval tree operations can be implemented. Section
provides some starter code and details the task breakdown. Importantly, Section [provides
significant assistance to the verification of each operation, providing needed lemmas and ex-
plaining how to approach the verification problem in the right way. All you need is really
written in this document, so read carefully!

As a reference, my implementation of Task 3 is less than 190 lines of Dafny code, with com-
ments and generous use of linebreaks (e.g. multiple requires and ensures clauses in pre-
and post-conditions and multiple invariant clauses in loops, rather than using conjunctions).
My implementation of Task 1 and Task 2 are similar in length — around 150 lines of Dafny code,
following the same style. Don’t panic. Don’t leave it for the last minute. Ask for help.

INTERVAL TREES 2

1 Interval Trees

In many real world (and imagined) programming scenarios, we are faced with a problem which
can be encoded as follows: given a fixed-length sequence of (integer) values, whose contents can
change over time, we want to compute some ranged queries over the elements of the sequence.
For the purposes of this assignment, our ranged query of choice is a ranged sum (i.e., the sum
of all elements within a given range in the sequence).

While this pattern may seem very abstract, it actually shows up in quite a few places: Arith-
metic coding, for instance, is a form of encoding used in lossless data compression which crit-
ically relies on this update/ranged sum pattern. In quantum computing, specifically quantum
computational chemistry, encoding fermions with qubits can be achieved using a similar up-
date/ranged sum pattern (this is known as the Bravyi-Kitaev encoding [BK02]). Less exotic ap-
plications include computing various running statistics (e.g. running medians) in life sciences.
In less real-world scenarios, this pattern is commonly found in competitive programming prob-
lems.

Now that we clearly understand that this is a relevant problem to solve, we can observe
that the naive solutions are somewhat inadequate. Let us focus (for now) on a specific kind of
ranged sum called the prefix sum of a sequence. As the name entails, a prefix sum is a ranged
sum from the first element of the sequence up to a given element. For instance, given a sequence
(2,5,3,4) its successive prefix sums are 2,2 +5=7,24+5+3=10and 2+ 5+ 3+ 4 = 14.

If we maintain the sequence as an array, we can update the values very efficiently (O(1)),
but computing prefix sums requires O(n) operations, where n is the length of the sequence.
On the other hand, if we maintain the prefix sums rather than the sequence itself, we can very
efficiently query a given prefix sum (in O(1) time), but updates become O(n) since we may
need to update all the sums in the sequence. While this may seem like a reasonable trade off,
for large enough n (or where computation is inherently very expensive such as in the quantum
case cited above) and in scenarios where both the number of updates and prefix sum queries is
high, the linear complexity might be too steep.

Luckily, we don’t need to adopt the trade off above because there is a simple data structure
that allows us to efficiently perform both updates and compute prefix sums (in fact, general
ranged queries). This data structure is called an Interval Tree.

The interval tree encodes both the sequence and its prefix sums in such a way that both
updates and ranged queries can be performed in O(log n) time. The concept is easy to visualize
— consider the 4 element sequence (10, 3, 5, 1), arranged in the following tree:

We now enforce the property that the value of every (non-leaf) node will be the sum of the
value of its direct descendants:

INTERVAL TREES 19 April, 2022

INTERVAL TREES 3

Observe that the prefix sum of the entire sequence is now stored in the root of the tree and
we can easily compute all the prefix sums by querying the tree. For instance, to compute the
prefix sum up to third element of the sequence, we need only add the value of the green node
to the leaf containing 5. While it may not seem obvious that we are doing less work this way, it
becomes clearer with larger trees:

The tree above corresponds to the interval tree for the sequence (10, 3,5, 1, 8,4, 2, 7), with the
same property as before, where each node contains the sum of its direct descendants. Now, if
we want to calculate the prefix sum up to the fifth element (8) of the sequence, we need only
add the blue and yellow colored nodes above! For a more general case, if we want the prefix
sum up to the sixth element of the sequence we add the gray and blue nodes, and so on.

Ranged Sums. Another interesting aspect is that the interval tree allows us to easily compute
not just prefix sums but any ranged sum over the sequence. Lets now analyze a fully general
case, focusing on how the algorithm works:

INTERVAL TREES 19 April, 2022

INTERVAL TREES 4

We want to compute the ranged sum of the interval [1, 7] in the 0-indexed sequence consist-
ing of (10,3,5,1,8,4,2, 7). That means we want to sum the elements from 3 to 2, corresponding
to the green and blue colored nodes above, respectively. Since the green node is a right child
of its parent, we cannot use the value of its parent in the sum since it includes values outside
of our desired range. Similarly, when thinking about the upper bound of the interval, since the
blue node is a left child of its parent, we also cannot include the value of the parent in the sum
since it includes values that are outside of the interval limit. In this case, we need to add the
values 3 and 2 to our result and readjust our interval as follows:

Because we included 3 and 2 in our result, we can save the most work by readjusting our
lower and upper bounds to the green and blue nodes, respectively, and we repeat our analysis.
Since the green node is a right child of its parent, we add it directly to our running total. The
blue node is a left child of its parent, which for the upper limit means we must also add the
value to our running total. If we readjust our range following the same principle, we should
move the lower bound to the parent of its right sibling and the upper bound to the parent of its
left sibling. Since this “crosses” the ranges we should stop — and rightly so, because we have
calculated 3 + 6 + 12 + 2 which corresponds exactly to the ranged sum we wanted.

The description above matches the algorithm that allows us to compute any ranged sum
over an interval tree. We start from the leaves of the tree and with each step go up one level of
the tree. Depending on whether the nodes under consideration are left or right children of their
parents, we add them to the running total or skip them. Since in the [1, 7] example we were
always dealing with right-child lower bounds and left-child upper bounds, let us consider a

INTERVAL TREES 19 April, 2022

INTERVAL TREES 5

mixed case. For instance, the sum of the interval [0, 5[from before. Below we have colored at
each level the lower and upper bounds of the intervals:

Starting from the leaves, the lower bound is a left-child of its parent, so we don’t include it
in our running total and adjust the lower bound directly to its parent node — the idea is that
value will eventually be counted by one of the parent nodes, depending on the upper bound.
The upper bound is a left-child of its parent, so we must include it and readjust to the parent of
its left sibling. Now we are also in a different situation from before: the lower bound is a left
child of its parent, so we also don’t include it in our running total and move to its parent node.
The upper bound is a right child of its parent so by similar reasoning we don’t include it in our
running total and move to the parent. We are now in a situation that is identical to our starting
configuration (left-child lower and upper bounds): we skip the lower bound and add the upper
bound to our running total. After this step our bounds have crossed and we stop. If we take
stock, we notice that we computed 19 + 8, which is exactly what we needed.

Updates. Now that we have a general understanding of how to perform ranged sums, lets
think of how to update a value of the sequence while preserving the invariant that the value of
each node is the sum of its children. Lets try to update the 4th element of the sequence from 1
to 9. First we update the corresponding leaf:

Now, to reestablish the invariant, we need to update all the nodes going up the tree to the
root, starting from the green leaf node:

INTERVAL TREES 19 April, 2022

IMPLEMENTING INTERVAL TREES 6

Note that we need not consider any other values in the tree. We simply track the change to
the leaf node and perform the same update to the highlighted nodes. Since the update touches
exactly one node per level in the tree, we perform an update in log(n) steps.

2 Implementing Interval Trees

By now you are probably worried that you will have to implement and verify a complicated
pointer-based data structure. While you will have to implement interval trees in this assign-
ment, we don’t implement these trees using linked-list style cells but rather encode the flattened
tree in an array, such that we can easily do the following operations:

(1) Find the array index that corresponds to an element of the sequence.
(2) Given an array index corresponding to a tree node, find the array indices of its children.

(3) Given an array index corresponding to a tree node, find the array index of its parent.

Here’s how we represent the tree for a sequence of length n using an array. The array will
contain the values of the tree nodes. The representation is such that the left child of the node
in array index ¢ will be stored in index 2i + 1 and the right child in index 2i 4 2. The root will
be stored in index 0, its left child in index 1, its right child in index 2; the children of index 1 in
indices 3 and 4, and so on. This will hold for all indices that correspond to non-leaf nodes (and
only for those). The leaves of the tree (i.e., the elements of the sequence) are stored in the last n
indices of the array. This means that to represent the interval tree for a sequence of length n we
need an array of length 2n — 1.

Now, lets see how to perform the three operations above. First, (1) to obtain the i-th element
of the sequence we need to go to index i + (n — 1) of the array. This is because the first n — 1
elements of the array correspond to the non-leaf nodes of the interval tree. Finding the indices
of children nodes is straightforward: (2) the children of the node in index i are stored in indices
2i+1 and 2i+ 2. Moreover, we know that this holds for all indices in the array from 0 (inclusive)
to n — 2 (inclusive) or n — 1 (non-inclusive). Our representation will also have to enforce that if
the tree is stored in an array called tree, it must be the case that the value tree [i] must be
equal to the sum of values tree [2+i+1] and tree [2xi+2].

Finally, (3) given an array index i that corresponds to any (non-root) tree node, we can find
its parent in index (i — 1)/2 (integer division). Since this may not be obvious, lets revisit the
tree from our running example, but where the numbers now denote the corresponding array

INTERVAL TREES 19 April, 2022

2.1 Basic Operations 7

indices of the nodes. The path up from the leaf to the root that we used to perform the update
is highlighted in green:

Note that the parent of any non-root node i is in position (i — 1)/2 (e.g. (10 —1)/2 = 4,
(4-1)/2 =1,(1 —1)/2 = 0). Moreover, this works for nodes in both left and right child
positions (e.g., (12 — 1)/2 = (11 — 1)/2 = 5). Another very useful property that will be useful
later on is to note that left-children fall on odd indices and right-children on even indices.

2.1 Basic Operations

Lets now see how the ideas for the update and range query operations map onto our array
representation and the three index-based operations above. Below we will use s to refer to
the sequence of elements for which we are constructing the interval tree and s; to refer to the
element in position 7 of the sequence. For convenience we will assume the sequence is 0 indexed
(i.e. its elements are sq, 51, . . ., 5|5—1, Where |s| is the length of the sequence). We will use tree
to refer to the array-based implementation of the tree and use tree [1] to refer to the element
in position 4, as expected.

2.1.1 Update

The update operation is straightforward enough. Without loss of generality we will consider
the update operation as an increment operation by a certain value. Given index j of the sequence
element we want to update, and the value v by which we want to increment s;, we implement
the update on the array representation of the tree by first calculating the index in the array that
corresponds to element s;. By (1) above, we know this must be position j + |s| — 1 of the array.
The attentive reader may have noticed that since the length of tree is 2 x |s| — 1, then |s| — 1 is
exactly half (integer division) of the length of the array.

We now update this position of the array, incrementing its value by v, which temporarily
breaks our tree invariant that all array elements i, with 0 < i < |s| — 1 must satisfy the equality
tree[i] = tree[2x1+1] + tree[2%i+2].

To restore the invariant, we increment the nodes in the path from the leaf in index j + |s| — 1
up to the root by amount v. Let m be j +|s| — 1 . By (3), we traverse the appropriate elements of
the array by visiting position m := (m—1)/2, updating it by v and then repeating this procedure
until we have updated all nodes up to the root (recall that the root is in index 0 and must also
be updated).

INTERVAL TREES 19 April, 2022

TASKS 8

2.1.2 Ranged Query

The ranged query is slightly more subtle. First, make sure you understand the mechanics of
how the ranged query works on the tree itself. You should be able to observe that the procedure
that was described above leans heavily on the fact that the sum of all elements in a given level
is exactly the same as the sum of all elements in the previous level. More generally, the sum of
all nodes in the (array-indexed) range [a, b[(note the open interval for b) is equal to the sum of
all nodes in range [2a + 1, 2b + 1[. Convince yourself that this is the case and try to reimagine
the explanation for the ranged query given above, but where the upper bound is non-inclusive
— its the same calculation, except the “real” upper bound is off by one.

Lemma 2.1. Given a valid array-based implementation of an interval tree encoding sequence s, we have
that for all i and j such that 0 < i < j < |s| — 1, the sum of values in array indices [i, j| equals the sum
of values in array indices [2i + 1,27 + 1[.

Now, lets try to see how to perform the ranged sum of the interval [a, b] in the sequence s,
again noting that the interval is open in the upper range. As you will see, the open interval
makes the implementation more uniform (we assume below that a < b < |s|):

¢ First, since we start from the leaves of the tree, we calculate the array indices that corre-
spond to elements a and b in the sequence s (i.e., a + |s| — 1 and b + |s| — 1, respectively),
recalling that |s| — 1 is half (using integer division) of the length of tree. Let these two
values be ra and rb.

* We now repeatedly inspect the nodes denoted by ra and rb, leveraging Lemma[2.1Jabove.

— If rais a right child, then its value must be included in the running sum. If you look
at the tree that is labelled with the corresponding array indices, you will see that the
nodes in right-child position are exactly the even numbered indices. Therefore, we
test if ra is even, and if so, we add the array value at that position to our running
total. Otherwise we can skip this value. Another interesting aspect is that the way
we update ra is actually uniform: regardless of whether its a left or right child, we
are always moving up the tree to position ra/2 (check that this encodes the correct
behavior!).

— As for rb, if the value is even, this means that it is a right-child. Since the interval
is open on its upper-bound, this actually means that we are in a situation where we
must include the value at position rb-1 in our sum because its node must be a left-
child. Otherwise we are in a situation where we can skip this value. Now we need
to understand how we update rb — by using the open interval we can be completely
uniform since we always move up to the parent of rb, which means we always go to

(rb-1) /2.

¢ When do we stop? When the interval is empty (i.e.,, ra = rb)!

You should now have enough information to implement an update and ranged query oper-
ations over an array-based representation of an interval tree.

3 Tasks

Your job is to produce a verified implementation of an interval tree in Dafny, using the array-
based representation described above. The interval tree ADT should have the following opera-
tions (the pre- and post-conditions are incomplete):

INTERVAL TREES 19 April, 2022

TASKS 4

class IntervalTree {

//The actual tree
var tree: array<int>

/+*The number of leaves in the tree (i.e. the number of elements 1in
the sequence). */
ghost var leaves: int

/+Initializes an interval tree for a sequence of n elements whose
values are 0. =/

constructor (n: int)

requires n > 0

ensures leaves = n

//Updates the i-th sequence element (0O-based) by v
method update (i: int, v:int)
requires 0 < i < leaves

//Ranged sum over interval [a,b]

method query (a:int,b:int) returns (r:int)
requires 0 < a < b < leaves

ensures r = rsum(a,b)

}

Where rsum stands for the following (the specification of these functions is complete, except
for the ... in the reads clauses):

//Sum of elements over range [a,b][
function rsum(a:int,b:int) : int
requires Valid()

decreases b-a

requires 0 < a < leaves AN 0 < b < leaves
reads

{
if b < a then 0 else get (b-1)+rsum(a,b-1)

predicate ValidSize()
reads
{

tree.lLength = 2xleaves-1

/*ith element of the sequence, through the array-based
representationx/

function get (i:int) : int
requires 0 < i < leaves A ValidSize ()
reads

INTERVAL TREES 19 April, 2022

3.1 Taskl 10

tree[i+leaves—-1]

}

Note that the get function above is actually only needed to assist Dafny’s automation with
quantifiers.

3.1 Task1

Implement the interval tree according to the skeleton given above, completing it with the ap-
propriate invariants and post-conditions. For this iteration, do not add any extra ghost fields
to the code. This means that you do not need to use the dynamic frames pattern discussed in
class, nor should your abstract state be explicitly encoded using ghost state. Be careful in en-
suring that your specification does not reveal concrete state in post-conditions, although it will
necessarily do so in reads and modifies clauses.

3.2 Task?2

Having completed Task 1 successfully, adjust your specification to use the dynamic frames
pattern discussed in class to preserve information hiding. Note that this will require adjusting
loop invariants with extra seemingly “obvious” information about pertaining to pointers.
Caveat Emptor: If you are very confident, you may skip Task 1 and develop your verified im-
plementation only using dynamic frames (without losing any points). I strongly advise against
this decision.

3.3 Task3

Add a ghost field to your implementation that will represent the sequence that is backed by the
interval tree:

ghost var s : seqg<int>
The goal here is for the invariant of the ADT to enforce the following extra properties:

predicate Vvalid()

reads ...
{
YV
|s| = leaves
A\
tree[0] = sum(s)
N
(Vi e 0 < i < leaves = s[i] = get(i))
}
function sum(s: seg<int>) : int
{
if |s| = 0 then 0 else s[0]+sum(s[1l..])

}

Doing so will inevitably require adjusting the loop invariant of the update operation.

INTERVAL TREES 19 April, 2022

IMPORTANT VERIFICATION HINTS 11

4 Important Verification Hints

To be able to complete Task 1 and Task 2, you will need to define a predicate that adequately
captures the array-based representation of the tree in terms of the relationship between the
values of non-leaf nodes and its children (Valid () in the sample code above). This invariant
must be preserved by all tree operations.

The tree operations will likely ensure other properties, beyond just this invariant. The con-
structor should enforce that the the leaves of the tree have value zero. The update operation
should enforce that only the correct leaf was updated. The query operation should enforce its
result is correct (as given in the specification above).

Constructor. The constructor should enforce that the leaves of the tree have the value zero.
The constructor should be able to be verified directly by Dafny’s automation. Recall the array
initialization construct using a closure that we discussed in class. Moreover, note that the error
message:

in the first division of the constructor body (before ’'new;’),
"this’ can only be used to assign to its fields.

is due to constructors in Dafny having two “regions”: one where we only assign values to object
fields and another where we can mutate fields. You can indicate the start of the second region
with a line containing the command new; .

Update. The update operation should enforce that only the correct leaf was updated. For Task
1 and Task 2, no lemmas should be necessary to verify the update operation. Think carefully of
what the loop invariant should be. Specifically, the loop invariant should characterize the region
of the array corresponding to non-leaf nodes that is still unchanged by the loop (e.g. using the
old predicate); maintain the fact that only the appropriate leaf of the tree was modified; and,
that an adjusted “sum of children” property holds, where one of the children may have been
updated by v without the update having yet been reflected in its parent.

For this last point, its important to think of which indices this may happen to during the
loop. Critically, this part of the loop invariant should be such that when the loop terminates it
entails the overall “sum of children” property of the global ADT invariant. It is helpful if you
think of an arbitrary part of the tree (where the labels are the node indices):

For any given part of the tree, we want the value at node i to equal the sum of the values
at 2i + 1 and 2¢ + 2. If your “cursor” is either of the two children at the start or end of the
loop body, then there is an “extra” v in the sum of the children that is not yet captured in
the parent i. Otherwise, in all other parts of the tree the “sum of children” property should
hold outright. Either we have already adjusted the tree or its a part of the tree that is many
levels up and the property is still correct, although globally out of date. Recall that you can use
if ...then ...else ...in specifications.

INTERVAL TREES 19 April, 2022

IMPORTANT VERIFICATION HINTS 12

Ranged Query. The ranged query invariant will turn out to be surprisingly succinct, relating
the result r with the ranged sum rsum (a, b) and the sum of the “current interval” (between ra
and rb in the explanation above). However, a and b stand for indices in the sequence whereas ra
and rb stand for indices in the array. This means we cannot use rsum (ra, rb) in our invariant.
I strongly recommend you use the following auxiliary definition:

//sum of array elements in [a,b][

function sumArr (a:int,b:int) : int

requires Valid()

requires 0 < a < tree.Length A 0 < b < tree.Length
reads ...

{

if b < a then 0 else tree[b-1]+sumArr (a,b-1)

}

To actually verify the ranged query, Dafny will require some assistance. First, Dafny needs
a way to relate the outcome of rsum and sumArr:

lemma shift (a:int,b: int, c: int)

requires Valid() A 0 < ¢ < leaves-1

requires 0 < a < leaves A 0 < b < leaves
requires V i e a < i < b = get (i) = treel[i+c]
ensures rsum(a,b) = sumArr (a+c,b+c)

decreases b-a

... 1}

The lemma above looks complicated, but all its saying is that rsum sums the same elements
as sumArr, shifted by some amount ¢, provided the result of get behaves accordingly. This
lemma will be necessary to “get the ball rolling”, so to speak, when the result is still 0.

For the correctness of the procedure throughout the tree, we will need to encode the ana-
logue of Lemma(2.1|in Dafny and will require an “obvious” property of sumArr:

lemma crucial (ra: int, rb: int)
requires 0 < ra < rb A 2xrb < tree.Length A Valid()
ensures sumArr (ra,rb) = sumArr (2+«ra+l,2xrb+1)

lemma sumArrSwap (ra:int, rb:int)

requires Valid ()

requires 0 < ra < rb A 0 < rb < tree.Length
ensures sumArr (ra,rb) = treel[ra]+sumArr (ra+l, rb)

You will need both of these to reestablish the loop invariant. Think very carefully of how
to instantiate the lemmas. My recommendation is to start from the loop invariant (which we
assume holds at the start of the loop) and then incrementally update it with each operation
performed in the loop body. At the end of the loop you should end up with several possibilities,
depending on the parity of ra and rb. With the goal of reestablishing the loop invariant in
mind, see how crucial could help simplify this expression and how sumArrSwap relates to
your running values.

Task 2. For this task, you should not need to change your verification efforts in a significant
way. Beyond the dynamic frames patterns in reads and modifies clauses (and the corre-
sponding adjustments to the ADT invariant), you should only need to adjust the specification

INTERVAL TREES 19 April, 2022

GRADING 13

of the update method. Specifically, you will have to include various “obvious” (emphasis on
the obvious aspect) properties as part of your loop invariant that ensure dynamically allocated
memory has not suffered any “dramatic” changes. The post-condition will also require a very
minor adjustment to guarantee that the appropriate auxiliary functions may be used.

Task 3. For this task, you will very likely need the following lemmas:

lemma sum_zero (s: seqg<int>)
requires Vi e 0 < i < |s|] = s[i] =0
ensures sum(s) = 0

lemma sum_elem(s: seqg<int>, x:int, p: int)
requires 0 < p < |s]|
ensures xt+tsum(s) = sum(s[p := s[p]l+x])

The challenge will be in enriching the loop invariant of the update operation. Try to express
the relationship between the value of sum (s) before and after the update and the relationship
between the value “currently” being touched by your loop cursor and the one before the update.
This task will also require a few “obvious” properties to be stated as part of the invariant to
satisfy pre-conditions of auxiliary functions.

5 Grading

You are expected to use the techniques covered in lecture to ensure the ADT interface does not
break the abstraction. The handout is divided in three tasks which will be graded indepen-
dently. As a baseline, if you are able to complete Task 1 successfully (meaning with an ade-
quately abstract specification that captures the properties mentioned in this document), with
some lemmas assumed but not proved, you should expect a passing grade (but no more).

References

[BKO2] Sergey B. Bravyi and Alexei Yu. Kitaev. Fermionic quantum computation. Annals of
Physics, 298(1):210-226, 2002.

INTERVAL TREES 19 April, 2022

	Interval Trees
	Implementing Interval Trees
	Basic Operations
	Update
	Ranged Query

	Tasks
	Task 1
	Task 2
	Task 3

	Important Verification Hints
	Grading

